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CRYSTALLIZATION DYNAMICS OF A LIQUID METAL DROP

IMPINGING ONTO A MULTILAYERED SUBSTRATE

UDC 532.501.32:535.347:535.52M. R. Predtechensky,1 A. N. Cherepanov,2

V. N. Popov,2 and Yu. D. Varlamov1

Thermal and hydrodynamic processes that occur during impingement of a liquid metal drop onto
a multilayered substrate are numerically studied. The mathematical model is based on the Navier–
Stokes equations for an incompressible liquid and on substrate and drop heat-transfer equations that
take into account the surface-tension forces and metal solidification. The effect of the impact velocity,
initial drop diameter, metal overheating, and temperature and thermophysical characteristics of the
substrate on the morphology of the solid drop, its height, contact-spot diameter, and total solidification
time was examined numerically. The simulation results are found to be in satisfactory agreement
with experimental data.

Introduction. Thermal and hydrodynamic phenomena that occur during impingement of a liquid drop onto
a solid surface is a subject of considerable interest because of their increasing importance in advanced applications
where the spreading of a liquid over a surface is accompanied by heat transfer and phase transition. The novel
technology for producing microelectronic components known as the solder-drop-printing technique is an example
for this [1, 2]. The central point in this technology is deposition of liquid solder drops 40–100 µm in diameter onto
microchip terminal pads, where the drops solidify to be subsequently used for mounting microelectronic components
on the substrate.

Impingement of liquid metal drops (with a typical volume of the order of 10−12 liter) onto a cool substrate
is rather a complex process in which a liquid with a free surface spreads over a solid body. This process involves
considerable local deformations of substances, heat transfer, and phase transition. Depending on deposition condi-
tions and on particular properties of substrate and drop materials, liquid flows of various types may develop in the
drop, from slow capillary spreading of the liquid over the substrate surface to rapid smashing of drops against the
substrate, followed by their fractionation.

In the technique under consideration, a typical velocity of liquid drops is 1–10 m/sec, which corresponds to
mean Reynolds and Weber numbers (1 < Re < 2000 and 1 < We < 100, respectively). This range of conditions
seems to be a most complex one since, in this case, along with the influence of inertial and viscous forces, the effect
of the surface-tension force becomes substantial.

For micron-size droplets, the characteristic spreading, oscillation, viscous-deformation, cooling, and solidifi-
cation times are comparable and normally fall within the range of several microseconds. That is why experimental
studies of rapid processes in a drop face serious methodical and technical difficulties. In this situation, numerical
modeling becomes an effective research tool. Investigation into the dynamics of the above-indicated phenomena, in
particular, temperature fields and crystallization-front velocity, is of obvious interest.

To facilitate mathematical treatment of the deformation and crystallization dynamics of a drop after its
impingement onto a substrate, some simplifying assumptions were used in previous studies. For instance, Harlow
and Welch [3] chose to ignore the effect of viscosity and surface tension. Tarapaga and Szekely [4] developed a
numerical model that described the deformation of the free surface of a drop on a flat surface under isothermal
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Fig. 1. Schematic of a deforming drop after its impingement onto
a multilayered substrate.

conditions in the perfect-liquid approximation. Fedorchenko [5] studied numerically the drop spreading over a
surface and conductive–convective heat transfer during impingement of a cylindrical drop onto a solid substrate. It
was shown that two stages may be distinguished in the drop-substance collision process: 1) instantaneous impact
acting upon the liquid volume; 2) forced spreading of the viscous liquid over the substrate. Fedorchenko [5] gave a
detailed analysis of hydrodynamic phenomena that occur in a drop after its impact spreading over the substrate.

Using the Lagrangian representation of convective heat-transfer equations and the finite-element approach to
solve them, Zhao et al. [6] developed a computer code that allowed them to examine the dynamics of a viscous metal
flow in a drop after its impingement onto a substrate under the conditions without melt crystallization. This model
was used by Waldvogel and Polikakos [2] to study hydrodynamic and crystallization processes in a liquid metal drop
after its impingement onto a multilayered substrate. In their study, both the viscosity and the action of capillary
forces at the free surface of the drop were taken into account. Nonetheless, the use of the finite-element approach
made necessary extensive preliminary manipulations causing considerable loss of computer time. In addition, in
solving the Stefan problem by introducing an effective heat capacity, Waldvogel and Polikakos [2] treated the latent
crystallization heat as uniformly distributed over the whole temperature range considered. The latter seems to be
a factor responsible for the observed decrease in the total solidification time with increasing drop overheating [2].

In the present simulations, an implicit finite-difference scheme was used, which included an iteration algo-
rithm for solving the system of algebraic equations at each time step. The free surface of the drop was marked
with particles-markers. The crystallization heat was assumed to be “smeared” in a narrow temperature interval
around the equilibrium crystallization point. As a result, the solidification time was found to vary in proportion to
overheating.

The adequacy of the numerical model and the approximations used were tested by comparing predicted
values with experimental data. A detailed analysis of the effect of process parameters on the final shape of the
drops was performed.

Physical Statement of the Problem. We study the dynamics of a liquid metal drop after its impingement
onto a flat solid surface. We assume that a spherically symmetrical liquid drop impinges, at a certain velocity, onto
a wettable rigid substrate. The trajectory of the drop is normal to the substrate surface, and the initial substrate
temperature is lower than the crystallization point of the drop material. After the collision, the drop surface starts
deforming, and an internal liquid flow develops in the drop (Fig. 1). As a result of thermal interaction, the liquid
inside the drop gets cooled down to a certain critical temperature, and the overcooled metal layers solidify. Two
types of solidification are possible: 1) volume solidification; 2) layer-by-layer solidification. The first type is the case
if the whole liquid contained in the drop volume is overcooled down to a certain critical state, after which solid nuclei
appear in the melt. The process may take either homogeneous or heterogeneous path. The latter possibility is more
probable since actual alloys normally contain nondissolved microparticles that act as nucleation centers. Then, the
nuclei formed further grow in size releasing the crystallization heat. During this period, the hydrodynamic processes
in the drop rapidly decay owing to an abrupt increase in the apparent viscosity of substances (both of the liquid
and crystals). The morphology of the solid drop correlates with the shape the drop acquires by the beginning of
solidification.
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Crystallization of the second type is characterized by the formation of a solid metal crust at the spot where the
melt immediately contacts the substrate surface, the cooling there being most rapid and the formation of nucleation
centers on the surface microroughness possible. During continuous cooling of pure metals and eutectic alloys, a
macroscopically smooth crystallization front steadily propagates upward, separating out the already solidified metal
from the liquid one. In this case, the liquid drop may evolve on the solid crust formed by metal crystallization.
The velocity of the crystallization front and the dynamics of the liquid part of the drop determine the morphology
of the drop after its complete solidification.

It should be noted that the quantitative description of solidification with due account for volume nucleation
is difficult because of the lack of many data, required for calculations, on physical, chemical and kinetic parameters
of nonequilibrium crystallization of high-velocity (v0 > 100 m/sec) liquid-alloy drops, for which the cooling rate is
normally higher than 105 K/sec [7]. In applying solder drops onto substrates in microelectronic technology, moderate
impact velocities, v0 = 1–10 m/sec, are normally used, the drop diameters being d0 = 40–100 µm. The cooling rate
under such conditions is usually lower than 105 K/sec. Therefore, to adequately describe crystallization of pure
metals and eutectic alloys (for instance, Sn + Pb), one may use the Stefan-problem approximation, assuming that
the temperature at the solid–liquid interface coincides with the equilibrium solidification point, the crystallization
front is macroscopically smooth, and the nucleation in the liquid metal may be ignored.

Viscous-Fluid Dynamic Equations. To numerically study the dynamics of a liquid drop after its im-
pingement onto a flat solid surface, we use the Navier–Stokes equations for a viscous incompressible fluid, assuming
the flow in the drop to be laminar and the values of the thermophysical parameters of the fluid to be constant and
equal to their mean values in the temperature range under consideration. With allowance for the assumptions used,
the equations of the fluid flow in the axial coordinate system shown in Fig. 1 (r, z, and θ are the radial, axial, and
azimuthal coordinates, respectively) have the form [8]
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where ρ is the density of the fluid, g is the free-fall acceleration, u and v are the radial and axial components of the
velocity vector; the stress tensors σθθ, σrr, σzr = σrz, and σzz are given by the relations
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(p is the pressure inside the liquid drop, pa is the atmospheric pressure, and µ is the fluid viscosity).
Passing in (1)–(3) to dimensionless quantities and performing some rearrangements with allowance for the

above relations, we write the system of equations of interest as
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where τ = tv0/d0, x = r/d0, y = z/d0, U = u/v0, V = v/v0, P = p/(ρv2
0), Re = v0d0/ν is the Reynolds number,

Fr = v2
0/(gd0) is the Froude number, ν = µ/ρ is the kinematic viscosity, d0 is the initial drop diameter, and v0 is

the impact velocity.
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System (4) is solved with the dimensionless boundary conditions

U = 0, V = −1, P = 4/We for τ = 0,

U = 0,
∂V

∂x
= 0,

∂P

∂x
= 0 for x = 0,

U = 0, V = 0 for y = ξ(x, t), ξ(x, 0) = 0,

where We = ρv2
0d0/σ is the Weber number and ξ(x, t) is the solidification front.

The last relations is supplemented by the relations at the free surface of the liquid particle:(
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Here nx and ny are the components of a unit vector normal to the free surface of the drop, along the x and y axes,
respectively, and the dimensionless curvature of the drop surface is given by the relation [6]
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where the prime denotes the derivative with respect to the dimensionless arc length S = s/d0 and xs = rs/d0 and
ys = zs/d0 are the dimensionless projections of the vector Rs/d0 onto the r and z axes, respectively (Fig. 1).

Heat-Transfer Equations. We determine the change in the temperature fields in the drop–substrate
system from the solution of the conjugate heat-transfer problem posed both in the liquid and solid phases of
the drop, which undergoes solidification, and in the substrate. We take into account the liberation of the latent
crystallization heat during the phase transition by introducing an effective heat capacity [9].

We write the heat-transfer equations in the liquid part of the drop (i = 1), in the layer that has already
solidified (i = 2), and in the substrate (i = 3) in the following dimensionless form:
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(6)

Here Pei = d0v0/ai is the Peclet number, θ = Ti/Teq and τ = tv0/d0 are the dimensionless temperature and
time, respectively, ai = λi/(ciρi) is the thermal diffusivity of the ith medium, and λi, ρi, and ci are the thermal
conductivity, density, and heat capacity of the medium, respectively. The effective heat capacity ceff is given by the
relations

ceff =


1, θ > 1 + ∆θ/2,

1 + St/∆θ, 1−∆θ/2 6 θ 6 1 + ∆θ/2,
c2/c1, θ < 1−∆θ/2,

(7)

where St = æ/(c1Teq) is the Stefan number, ∆θ = ∆T/Teq is the dimensionless temperature interval over which
the phase transition is “smeared” [9], æ is the latent crystallization heat, and Teq is the equilibrium crystallization
point.

Equations (6) should be supplemented with the following boundary conditions.
1. Initial values of the drop and substrate temperatures:

θ1|τ=0 = θ10, θ3|τ=0 = θ30. (8)

2. Adiabaticity condition at the free surface of the drop:
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3. Condition of heat transfer between the drop and the substrate:
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Here λ̄i = λi/λ1 (i = 1 for θ > 1 and i = 2 for θ < 1), Bi = kd0/λ1 is the Biot number, k =
(∑

j

δsj
λsj

)−1

is the

coefficient of substrate-to-particle heat transfer through a clad coating (if the substrate is a multilayered one), and
δsj and λj are the thickness and thermal conductivity of the jth sublayer, respectively.

4. Conditions of heat transfer at the lower, side, and upper non-wetted substrate surfaces, respectively:
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Here L̄ = L/d0 and x3 = r3/d0 (L and r3 are the thickness and radial dimension of the substrate; r3 � d0).
For a polymer substrate, instead of the first condition of (11), we assume that θ3|y=−L̄ = θm, where θm is the
dimensionless ambient temperature.

5. Symmetry condition at the y axis in the drop and substrate:
∂θi
∂x

∣∣∣
x−0

= 0, i = 1, 2, 3. (12)

The heat-transfer equations (6) with the boundary conditions (7)–(12), together with the Navier–Stokes
equations for the liquid part of the particle (4), govern the drop cooling and solidification process.

Brief Description of the Numerical Algorithm. The numerical algorithm was based on a finite-
difference approximation of the Navier–Stokes and heat-transfer equations with an implicit scheme of order
O(τ, h) [10]. The region occupied by the unsteady melt flow was marked with successively enumerated particles-
markers located along the drop contour and moving at the local fluid velocity [3]. To satisfy the monotonicity
condition for the finite-difference scheme, the spatial derivatives in the inertial terms were approximated with due
regard for the sign of velocity in a vicinity of each nodal point of the computational grid. The diffusion terms
were substituted with their second-order difference analogs. In this approach, no limits were imposed by Reynolds
numbers on the algorithm stability.

Having determined the velocity field, we calculated the temperature field in the drop and substrate according
to Eqs. (5) and (6). The thermal problem is to be solved in two conjugated computational domains, in the drop
and in the substrate. To match the temperature fields in the two domains, no more than three iterations were
sufficient. The new coordinates of the markers, rn+1

m and zn+1
m , at the (n + 1)th time step were calculated by the

relations
rn+1
m = rnm + unmτn+1, zn+1

m = znm + vnmτn+1, m = 1, . . . ,M(tn).

Here unm and vnm are the particle velocities determined in accordance with the mean local velocities in a small
vicinity of each of the markers and M(tn) is the number of markers at the time tn. At each time step, we had to
either remove or add some part of markers, in order to obtain their uniform distribution over the drop contour, and
re-enumerate them. Throughout the whole computational domain, a spatial grid hx = hy = 0.01 was used. At the
moment tn+1, the time step τn+1 was calculated by the formula

τn+1 = min{hx, hy}/K0 max
m
{|unm|, |vnm|}, K0 = 20.

Following [9], we chose the region over which the boundary between the phases was “smeared” so that the
region included two or three nodes of the spatial grid. This could be achieved through preliminary estimation of
typical temperature gradients. In the computer program, the temperature interval ∆T was chosen automatically.
It should be noted that, in the calculations, the mean value of this parameter was 5◦C.

At each time step, we solved the systems of algebraic equations using an iterative procedure. The computa-
tions were terminated on reaching the relative error of 0.002.

Results and Discussion. The model was tested for adequacy by comparing the calculated values with the
experimental data obtained using the procedure described in [11]. Liquid drops of various diameters with different
initial temperatures and impact velocities were deposited onto substrates with the help of a specially designed drop
generator [11]. The final shape of the drops after their solidification was analyzed on a scanning electron microscope.
The processes that occurred during the impingement of the microdrops onto the surface were visualized with the
help of a superhigh-speed video-camera equipped with a microscope attachment and a stroboscopic system, which
ensured microsecond time resolution. The inaccuracy in visualizing the spreading stages of deposited drops was
±5 µsec; its value depended primarily on the drop-velocity fluctuations during the ejection of the drops from the
generator. As the drop material, both in the experiment and computations, we used a tin-lead eutectic (63% Sn
+ 37% Pb). In examining the effect of heat-transfer conditions on the evolution of drops, two types of substrates
were used.
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Fig. 2. Experimental (a) and computed (b) shapes of the drop after its impingement onto the copper substrate
for t = 10 (1), 30 (2), 50 (3), 70 (4), 100 (5), and 120 µsec (6) (d0 = 68 µm, v0 = 1.8 m/sec, T0 = 240◦C, and
Ts = 50◦C).

Type 1. A 300 µm-thick copper plate placed on a polymeric base and clad from above with two metal layers
(nickel lower layer of thickness δNi = 0.25 µm and gold upper layer of thickness δAu = 0.1 µm). The melt cooling
was assumed to occur due to heat accumulation solely by the copper layer, the two clad coatings were considered as
thermal resistances, and the polymeric base was a thermal insulator. Accordingly, the adiabaticity condition was
adopted at the interface between the copper plate and the polymeric base.

Type 2. A 25 µm-thick polymeric substrate with a gold coating (δAu = 0.1 µm). In this case, a constant
temperature was set at the lower surface. The gold layer was considered as a thermal resistance. The following values
of the thermophysical parameters of the (63% Sn + 37% Pb) drop and substrate materials (copper and polymer) [2,
12, 13] were used: for the liquid phase of the drop, λ = 25 W/(m ·K), c = 238 J/(kg ·K), ρ = 8218 kg/m3,
σ = 0.345 N/m, µ = 2.62 · 10−3 kg/(m · sec), æ = 42 · 103 J/kg, and Teq = 456 K, for the solid phase of the drop,
λ = 48 W/(m ·K), c = 176 J/(kg ·K), and ρ = 8218 kg/m3, for copper, λ = 397 W/(m ·K), c = 391 J/(kg ·K), and
ρ = 8900 kg/m3, and for polymer λ = 0.26 W/(m ·K), c = 1570 J/(kg ·K), and ρ = 1924 kg/m3.

The proposed model was tested for adequacy by comparing the drop shapes computed for different times after
the drop impingement onto the copper substrate with the experimental data previously reported in [11]. Figure 2
shows the experimentally determined and computed shapes of the drop, together with the velocity fields in its liquid
part for different moments. It follows from Fig. 2 that the agreement between the experimental and predicted data
is satisfactory (the difference is 10–20%). The predicted data show that the predominant part of the drop solidifies
already by the moment t = 100 µsec after the collision at a velocity of 1.8 m/sec, whereas the upper part of the
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Fig. 3. Dynamics of drop-vertex oscillations after the collision of the drop with the copper substrate
(v0 = 1.8 m/sec) (a) and polymeric substrate (v0 = 3 m/sec) (b) for T0 = 240◦C and Ts = 50◦C.

1 2 3

4 5 6

1 2 3

4 5 6

50 µm

b

a

H/d0 H/d0 H/d0

H/d0H/d0H/d0

0.8

0.4

0.2

-0.5 0 0.5 r/d0 -0.5 0 0.5 r/d0 -0.5 0 0.5 r/d0

-0.5 0 0.5 r/d0-0.5 0 0.5 r/d0-0.5 0 0.5 r/d0

0.8

0.6

0.2

0.6

0.4

0.2

0.2

0.80.8

0.6

0.2

0.8

0.4

0.2

Fig. 4. Experimentally determined (a) and computed (b) shapes of the drop after its collision with the
polymeric substrate (d0 = 62.5 µm, v0 = 3 m/sec, T0 = 240◦C, and Ts = 50◦C) for t = 10 (1), 30 (2), 50
(3), 70 (4), 80 (5), and 90 µsec (6).
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Fig. 5. Experimentally determined (a) and computed (b) shapes of the drop after its collision with the
polymeric substrate (d0 = 68 µm, T0 = 240◦C, and Ts = 50◦C) for v0 = 0.7 (1), 1.8 (2), and 5 m/sec.

Fig. 6 Fig. 7

Fig. 6. Relative contact-spot diameter dc/d0 of the solid drop versus impact velocity (T0 = 240◦C and
Ts = 50◦C) for d0 = 25 (1), 40 (2), 68 (3), and 91 µm (4).

Fig. 7. Total time of drop solidification versus initial melt temperature (Ts = 50◦C) for v0 = 1.8 (1) and
5 m/sec (2); the solid and dashed curves refer to d0 = 68 and 91 µm, respectively.
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drop (approximately 1/8 of the particle height) remains liquid. By the above-indicated time, the drop has executed
three oscillations (Figs. 2 and 3a). At first, the height of the drop H(t) decreases, and the liquid spreads in the
radial direction. Subsequently, the direction of the fluid flow changes to the opposite one, and the top of the drop
starts ascending. Then, the whole process recurs. Simultaneously, as a result of directional heat removal, the lower
layers of the drop solidify, giving rise to a collar formed at the drop periphery by the radially flowing fluid. The
mass of the liquid volume of the drop gradually decreases. As the mass of the melt not yet solidified decreases, the
frequency of the oscillations increases (the period diminishes), and the amplitude decreases tending to zero due to
the loss of the fluid-flow energy for viscous friction and work against the surface-tension force (Fig. 3a). The total
solidification time of the drop in the case under consideration is 127.6 µsec.

Varlamov et al. [11] derived the following analytical relations for the linear frequency ω(t) and the number
of oscillations n the liquid part of the drop executes for the total solidification time:

ω(t) = ω0(1− (t/tsol)1/2)−1/2; (13)

n = (8/3)ω0tsol. (14)

Here tsol is the total solidification time and ω0 is the linear oscillation frequency of the free surface of the drop,
given by the formula [14]

ω0 = (4/π)
√
σ/(ρd3

0). (15)

For d0 = 68 µm and for the above-indicated values of σ and ρ, it follows from (15) that ω0 = 1.47 ·104 sec−1.
Inserting this value and tsol = 127.6 µsec into (14), we find the number of executed oscillations n = 5. This value
agrees well with the data of Fig. 3a. To compare the values calculated by formula (13) with the data of Fig. 3a, we
may conveniently introduce the oscillation period τosc = ω−1

0 (1− (t/tsol)1/2)1/2. Substituting the values of ω0 and
tsol into this formula and setting the current values of t equal to those corresponding to the maxima in the curve of
Fig. 3a (tmax = 45.5, 80, 97.4, 107.5, and 115 µsec), we obtain the analytically determined values τosc = 43.2, 31,
24.2, 19.4, and 15.3 µsec, whereas the numerical algorithm yields τosc = 45.5, 34.5, 17.4, 10.1, and 7.5 µsec.

The final shape of the drop after its complete solidification is a cone with a rounded-off vertex and corrugated
(stepwise) side surface. The total number of waves on the corrugated side surface of the cone equals the number of
oscillations executed by the liquid phase of the drop. The relative height and radius of the contact spot of the solid
drop are 0.8 and 0.675, respectively.

If the drop impinges onto a polymeric substrate with low thermal conductivity, the total solidification time
turned out to far exceed the period of drop oscillations. Moreover, these oscillations almost completely decay by
the moment the crystallization begins. Therefore, the particle vertex display a regular oscillation behavior with
constant frequency and decreasing amplitude (Fig. 3b). The predicted oscillation period coincides, within 6–8%,
with the theoretically estimated one obtained by formula (3). The drop solidifies as a segment with a smooth surface
(Fig. 4).

With increasing impact velocity, the area of the contact spot after the complete spreading of the drop
increases (Fig. 5). The thickness of the solid drop and its total solidification time both decrease. For instance,
at the impact velocity v0 = 5 m/sec, a drop 68 µm in diameter completely spreads over the substrate for a time
of 28 µsec and acquires the shape of a thin disk enclosed, in its periphery, by a ring collar (Fig. 5). The reverse
flow of the fluid toward the disk center has not enough time to reach it, since the central zone of the disk has
already completely solidified, and the energy of the fluid is not sufficient to overcome viscous-dissipation forces and
the surface-tension force that acts from the internal boundary of the collar. For this reason, the drop after its
solidification acquires the shape of a disk with a hollow in its central region. The total solidification time is 58 µsec.
The height of the drop at its axis (y = 0) monotonically changes until the drop gets completely solidified.

Figure 6 shows the experimental and computed dependences of the relative contact-spot diameter of the
solid drop on the impact velocity. Figure 7 shows the total solidification time of drops versus the initial melt
overheating. It is seen from Fig. 7 that the dependences are almost linear, and the values of tsol increase with
increasing drop diameter. Waldvogel and Polikakos [2] showed that the solidification time decreases with increasing
overheating (everywhere except for some temperature intervals). This phenomenon is likely caused by the too
rough approximation of the effective heat capacity, related to the “smearing” of the crystallization heat over the
whole temperature range of interest. In the present study, a local “smearing” in a vicinity of the phase-transition
boundary was assumed, which enabled us to more adequately allow for the crystallization heat.

101



REFERENCES

1. D. J. Hayts, D. B. Wallace, and M. T. Boldman, “Picoliter solder droplet dispersion,” Int. J. Microcircuits
Electr. Packaging, 16, 173–180 (1993).

2. J. M. Waldvogel and D. Polikakos, “Solidification phenomena in picoliter size solder droplet dispersion on a
composite substrate,” Int. J. Heat Mass Transfer, 40, No. 2, 295–309 (1997).

3. F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface,” Phys. Fluids, 8, 2182–2189 (1965).

4. G. Tarapaga and J. Szekely, “Mathematical modelling of the isothermal impingement of liquid droplet in spray
processes,” Metall. Trans., 22, 901–914 (1991).

5. A. I. Fedorchenko, “Hydrodynamic and thermophysical features of the impingement of melt drops onto solid
surfaces,” Author’s Abstract, Doct. Dissertation in Phys.-Math. Sci., Novosibirsk (2000).

6. Z. Zhao, D. Polikakos, and J. Fukay, “Heat transfer and fluid mechanics during the collision of a liquid droplet
with a substrate-I,” Int. J. Heat Mass Transfer, 239, 2771–2789 (1996).

7. I. V. Salli, Crystallization under Rapid-Cooling Conditions [in Russian], Naukova Dumka, Kiev (1972).
8. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6: Hydrodynamics [in Russian], Nauka, Moscow

(1986).
9. A. A. Samarsky and B. D. Moiseenko, “A highly efficient computation scheme for the multidimensional Stefan

problem,” Zh. Vychisl. Mat. Mat. Fiz., 5, No. 5, 816–827 (1965).
10. P. J. Roache, Computational Fluid Mechanics, Hermosa, Albuquerque (1976).
11. Yu. D. Varlamov, M. R. Predtechensky, S. N. Ul’ynkin, et al., “Spreading and solidification of liquid metal

droplets on a substrate: Experimental, analytic models and numerical simulation,” Int. J. Microcircuits Elec-
tronic Packaging, 23, No. 4, 386–392 (2000).

12. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures [in Russian], Metallurgiya, Moscow
(1989).

13. G. S. Ershov and V. A. Chernyakov, Structure and Properties of Liquid and Solid Metals [in Russian], Metal-
lurgiya, Moscow (1978).

14. R. Choft, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, Academic Press, New York (1978),
pp. 187–188.

102


